Chapter Three- Exercises and Problems

Problem (1): For a particle inside a one-dimensional infinite potential well of width 2a. prove

N 1 :
that the normalization constant equal to NG for the wavefunction:

1- Y, (x) =A sin(%x)
2- Y,(x) =B COS(Z—Z x)

Problem (2): For a particle inside a one-dimensional infinite potential well of width 2a. prove
that the eigenfunctions are orthogonal.

1- Y;(x) = iacos (%x) & Y;(x) = \/iacos (2—Zx)
2- P,(x) = sm( ) & P;(x) = icos (2—”x)
3- 1/)1(35)—? ( )&¢4(x)——sm( nx)

Problem (3): Calculate (x), (p,.), (x?) and (p?) for a particle in one dimensional box.
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Solution: We shall consider the even parity wave functions

Wyl(x) = L cos kx, k= ﬂ n=1 3 5....

Ja ' 2a’

The same results are obtained if we consider the odd parity wave functions.

(a) (x) = J'_M WX W, dx
1 fa ,
= — | xcos kx dx
(1 J4—a

= 0, since the integrand is odd.

This result 1s as expected; the probability density y*y is symmetric about
x = 0, indicating that the particle spends as much time to the left of the centre
as to the right.



(b) (p) = j w”(—m—]m dx

- __h cos kx (—k sin kx)dx
i +¥—a
= ﬂ ’ cos kx sin kx dx
(a “-a
= 0, since the integrand is odd.

Again, the result is as expected. The particle moves back and forth,
spending half its time moving towards the left and half its time moving towards
the right. Thus the average momentum must be zero.

(c) (x?) = J._MW" Xy, dx
1Lpa 5 5
= — | x°cos kx dx
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== | x*(1 + cos 2kx)dx
2a
37 a
- l|:r_} +lj x% cos (2kx)dx
al 3 o av

2 t
= %+i'fo x? cos (2kx) dx
Integrating by parts
a 1 a ] ra
L x~ cos (2kx) dx= Y [x sin ka][' k-[o x sin (2kx) dx

The first term vanishes since 2ka = n and sin nw = 0. The integral in the
second term gives

a . _ ]_ el _I. a
-[0 x sin (2kx) dx= — E[Jc cos ka]ﬂ + —j cos(2kx) dx
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The first term has been evaluated using cos nt=—1 as n is odd. Thus, we obtain
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(d) (p*) = | wirpPy, dx

= lr‘ (:{)s,(afrﬁr)[—f*ﬁf2 ; 2} cos (kx) dx
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= j cos? kx dx
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_ 2k Iﬂ(l + cos(2kx)) dx
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_ % [[x]g + j:cos (2kx) dx]
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Problem (4): Show that the uncertainty relation AxAp > g Is satisfied in the case of a particle
In a one-dimensional box.

Solution: The uncertainty x is defined as, (Ax)? = (x?) — (x)?, similarly, the uncertainty p, is
defined as, (Ap,)? = (px*) — (px)*,

Using the result of problem (1)
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Therefore, (Ax)2(Ap)? = ﬁ.zﬂ,zﬁz[i_ E ,,]
12 2x°n”
22 1 1/2
Tn°
or Ax Ap=h =
i [ 12 2_]

The smallest value of this uncertainty product is for the ground state
(n=1). We get on simplifving

(Ax Ap),=; = 0.567

This is in agreement with

AxAp = /2

Problem (5): Consider a particle of mass m, moving in a one-dimensional infinite square well
of width L, such that the left corner of the well is at the origin. Obtain the energy eigenvalues
and the corresponding normalized eigenfunctions of the particle.
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Vex) — 0 O<x<L
V(x)=0 ) = {m x<0 and x>L -.(4.25)
Thus, we have to solve the Schrddinger equation, subject to the boundary conditions,
YO0)=y(L)=0 ...(4.26)

The general solution is again given by (4.16), (x) = 4 sin kx + B cos kx

The boundary condition at x = 0 requires that B = 0. The boundary condition at x = L
requires that,
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Thus the eigenvalues are
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., n=123,... ...(4.27)
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And the corresponding eigenfunctions are,

w2 h?
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mTx) n=123,..

Y(x) = Asin (T )



The normalization condition requires, A = \E

Therefore, the normalized eigenfunctions are

[2 . (nnmx (4.28)
x)=_[— — |, =1.2.3.... e\
v, (x) 7 Sm[ 7 ] n

Note that the energies of the particle are the same as in Equation (4.23) because L = 2a.

Problem (6): Calculate the three lowest energy levels (in eV) for an electron inside a one-
dimensional infinite potential well of width 2A. Also, determine the corresponding normalized
eigenfunctions. m=09.1 x 103 kg, #i=1.05x 10Is, 1 eV=1.6 x 10°°J.

Solution: Energies
If the width of the well is 2a from — @ < x < @, then the energy of the nth
level is given by
2_2,2
n-m°h
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E.H‘ =
Here a = 1A = 107°m. The three lowest levels correspond to n = 1, 2, 3.

(3.14)% x (105 x 107%)?
8x9.1x107 % (1071%)?
1493 x 107197

=[93ev

E,

E,=4E,=|372¢eV

Ey=9E, = [837eV

Eigenfunctions

_ 1 cos TX
10~ 2x1071°

1 sin 2mx
0™ 2x1071°

1 s'm[ X )
10~ 10710

Problem(7): Think of the nucleus as a cubical box of length 10~**m. Compute the minimum
energy of a nucleon confined to the nucleus. Given: mass of a nucleon 1.6 x 102" kg.
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Solution: The energy eigenvalue of a particle of mass m in a cubical box of length a is given by



2,9
mh”
Enx.n”,-.n - 2
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In the ground state, n,,n,,n, = 1,

3n’h?
2ma’
Therefore, the minimum energy of the nucleon is

E_ 3% (3.14)% x (1.054 x 107>%)?
T ax16x 107 x (107
=075x 1072 7J
— [ 6.1 MeV

E:

Problem: In the problem of cubical potential box with rigid walls, we have: 2 + m? + n? = 9,
Write down:

1- Schrédinger equation for the particle inside the box.
2- The possible values of: a- #,m,n. b-E,,,, C-Y,n, d-degree of degeneracy.
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Useful relations

" 1 — cos 26
sin‘g = ———
2
1+ cos 26
cos?) = ——
2
1
cosacosbh = > [cos(a + b) + cos(a — b)]
1
sinacosbh = > [sin(a + b) + cos(a — b)]
-1
cosacosb = 53 [cos(a + b) — cos(a — b)]



